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General properties of systems with competing interactions 
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Istituto di Fisica dell’llniversita di Palermo, Via Archirafi, 36-90123 Palermo, Italy 

Received 11 August 1983, and in final form 8 November 1983 

Abstract. We consider physical systems exhibiting a continuous and monotonic response 
to their driving fields and study the effects of the interaction between two such well behaved 
systems. The interaction (cross coupling between the systems) is described by effective 
fields and is assumed linear. We show that the coupling between the two systems gives 
rise to a rich variety of phenomena: negative differential susceptivity, phase transitions, 
bistability and other less usual features. All these effects, absent in the uncoupled systems, 
cannot be ascribed to an especially ‘dangerous’ form of coupling between the systems, but 
must be considered a general property of the cross coupling between two systems. 

1. Introduction 

A number of ‘strange’ phenomena, many of which are phase-transition-like (e.g. 
bistability, re-entrant behaviour, onset of instabilities. . . ) considered at first as unusual 
features exhibited only by some particular system, are now currently observed in an 
increasing number of physical systems. In short we say that a physical system exhibits 
a ‘strange’ effect if we observe any kind of departure from continuity, monotonicity 
or single-valuedness in the response of the system to its driving field. 

The formulation of dedicated theories has accounted for the occurrence of unusual 
phenomena in several systems and often a good agreement with the experimental data 
has been obtained. However, dedicated theories start from a detailed description of 
the interactions and of the processes taking place within the system of interest. This 
approach in general yields nonlinear equations, so that it is not easy to find analogies 
among theories formulated for different kinds of physical systems. A relevant idea 
that is beginning to spread around is that many ‘strange’ effects are to be ascribed to 
some general principle and not to the details of the models. This general principle is 
the interplay between different kinds of ordering within the same physical system. 
Literature reports where the coupling between order parameters is studied with no 
reference to a detailed description of some physical system are extremely rare. Perhaps 
the only remarkable paper of this kind is that by Imry (1975) who studied a Landau 
model with two order parameters featuring a biquadratic colipling between them. 
Imry found that such a system (in the absence of an external field) may exhibit several 
phase transitions as a function of temperature. 

In this paper we study a model system which is based on much looser assumptions 
than Imry’s. The model worked out in this paper is of the kind introduced by Micciancio 
and Vassallo (1982, hereafter referred to as I). In this model system, whose block 
diagram is shown in figure 1, two subsystems, F1 and F2, are driven respectively by 
their effective fields VI and V, which are functions of the other subsystem. In this 
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Figure 1. Block diagram of a system exhibiting two responses, Q1 and Q,, to the system 
driving field U. Q1 and Qz are  physical quantities providing a macroscopic description of 
two different processes taking place within the same system. Each process is driven by its 
effective fields, V, and V,, respectively. Accordingly the system is decomposed in two 
subsystems (F,, F,) driven by effective fields which are functions of the system driving 
field U and of the response Q, of the other subsystem. This block diagram is one of the 
simplest models of a system exhibiting two responses to a stimulus. 

Figure 2. The broken curve is an example of continuous and monotonic response of a 
subsystem to its input field V,. The response Q8 exhibits saturation at high and low values 
of V,. The full curve is a piecewise linear approximation of the broken curve. This 
approximation, used in the text to get an analytical solution of the equations of the system 
shown in figure 1, produces little or  no qualitative effects on the system behaviour. 

paper we relax the assumption of I that at least one of the subsystems exhibits a 
first-order phase transition and show that even if the responses Q, = F,( V,) of both 
subsystems are continuous and monotonic functions of Vi (see the broken curve in 
figure 2) the system of figure 1 exhibits a variety of phase transitions and other 
anomalies (like negative differential susceptivity). 

The main result of this work is that even a linear coupling between two well behaved 
systems is able to produce a large variety of ‘strange’ effects. 

2. Theory 

2.1. The model 

The equations ruling the system of figure 1 are formally written as 
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If the coupling functions G,( U, Q,) are strictly monotonic continuous functions of 
both U and Q,, according to I equation (1)  can be approximated with a Taylor series 
truncated to linear terms 

VI = U + K,,Q,. (3) 

The constants K12 and Kzl defined in (3)  will be referred to as ‘coupling constants’ 
and the plane spanned by them as the ‘ K  plane’. 

We assume that the response Q, of subsystem i, equation (2),  is a continuous and 
monotonic function of the input field V,. We also assume that F,( V,) exhibits saturation 
at high and low values of VI, as shown by the broken curve of figure 2. This kind of 
response is often met in real physical systems and may be ascribed, e.g., to the finite 
number of particles in the system. For simplicity we assume that O S  Q, S 1 and that 
U is defined over all the real axis. 

We are primarily interested in the qualitative effects produced by the intersystem 
coupling present within the system of figure 1; to this end an analytical solution of the 
system equations (3) and (2) is desirable. However, even in the case that the nonlinear 
functions F,( V,) (broken curve of figure 2) have the simplest algebraic form, a numerical 
solution of the system equations seems unavoidable. To overcome these difficulties 
we linearise piecewise the functions F,( V,) as shown by the full curve of figure 2 and 
rewrite (2) 

Q, = 0 ,  VI < WI-$&,, ( 4 a )  

Q, = t + (  VI - WJ/&,,  ( 4 b )  

Q, = 1,  w, + $ E ,  < v,. ( 4 c )  

w, --q&, < v, < w, + + E , ,  

With no loss of generality, because of the symmetry of the system, we may assume 
A = W2- Wl > 0. The quantities and e2 are defined to be positive. We introduce 
for later convenience the following quantities: 

Looking at the possible combinations of the signs of A, p and p one realises that 

(I) A > O ,  p > o ,  p < O ;  
(11) p > 0; this implies A > 0 and p > 0; 
(111) p < O ;  this implies A > 0 and p CO; 

(IV) A < 0; this implies p > 0 and p < 0. 

only four cases are possible: 

The physical meaning of these four cases is readily recognised by means of a superposed 
plot of the linearised Q1( V) and Q2( V), equation ( 4 ) .  In this plot one has to look at 
the two intervals of V in which Q1 and Q2 respectively increase from zero to one. In 
the four cases above one remarks that: 

(I) the intervals of V overlap, but the two rising parts of Q1( V) and Q2( V) do 
not intersect each other; 

(11) the two intervals are disjoint; 
(111) the two intervals of V overlap; QI and Q2 intersect each other at a point 

(IV) the two intervals overlap; Q1 and Q2 intersect each other; at the intersection 
where Q1 = Q2 > i; 

Q1= Q2 < t .  
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As we shall see later a distinction between cases I11 and IV is necessary, as the system 
behaves differently in the two cases. The solution of (3) and (4) can be obtained by 
plain linear algebra, as sketched in the appendix. 

2.2. Results 

Depending on the values of the coupling constants, the responses of the system to its 
driving field U may be of two kinds, that we label S (standing for single-valued) and 
M (for multi-valued). Accordingly the K plane is divided in two main regions, S and 
M, each containing several subregions. There are four different partitions of the K 
plane in subregions (maps of the K plane), one for each of the four cases possible for 
the signs of A, p and p. The various kinds of response Vi( U )  exhibited by the system 
are described in the next paragraphs, while figure 3 shows typikal examples of Vi( U ) .  
Figure 4 shows the maps of the K plane for the cases I and IV. 

(i) Single-valued response. In this region filling the even quadrants and a part of 
the odd quadrants of the K plane both effective fields are single-valued for all values 

Figure 3. Typical examples of response (effective field versus external field) illustrating 
different response features caused by the coupling between the subsystems of the system 
in figure 1 .  See text for details. 

Figure 4. Examples of partitions of the K plane obtained with two different choices of 
the constants E~ and E ~ .  ( a )  A > 0, p > 0 and p i 0. ( b )  A < 0. See ( 5 )  and the paragraph 
following it. Within each region bounded by broken lines the system exhibits qualitatively 
similar responses to U, as explained in the text. 
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of U Considering the susceptivities of the system 

X ,  =avilau, i = 1 ,2 ,  

the region S can be divided in four subregions. In fact the xi, independently from 
each other, may become negative in a finite interval of U. In figure 3(a )  we show a 
typical example of a V, ( U )  curve exhibiting a region of negative differential susceptivity. 
The four subregions of the K plane in which the system’s response is single-valued 
will be labelled Soo (both xi are everywhere positive), Slo (only x1 becomes negative 
in a finite interval of U )  and so on with Sol and Sl1. In the latter case the two intervals 
of U in which the susceptivities are respectively negative are different. 

(ii) Multi-valued response. In this region of the K plane both system responses 
are multi-valued in the same finite interval of U, in general. The region M is actually 
composed of two non-connected areas covering part of the odd quadrants of the K 
plane. According to the topological properties of VI( U )  and Vz( U )  in their interval 
of multi-valuedness we distinguish three subregions and label them M,, Mz and MD. 
In the region Ms (within the first quadrant) both the V,( U )  curves are S-shaped (figure 
3 ( b ) ) .  In the region Mz (third quadrant) either or both of Vi( U )  are Z-shaped (figure 
3(c)). When only one of the Vi( U )  is Z-shaped the other is S-shaped. In both the 
Ms and the Mz regions the responses exhibit a low- U branch terminating at U = Uthl, 

a high- U branch terminating at U = and a middle branch linking the 
former. Under the action of the driving field U the system switches from the low-U 
branch to the high- U one or vice versa and exhibits bistable or hysteretical behaviour. 
The third quadrant contains also the region MD where the system exhibits an unusual 
feature, that is a detached pair of branches (P1PzP3 and P1P4P3 in figure 3 ( d ) ) .  The 
system may exist in a state of the detached branch provided Ut,,< U <  Uthl, but 
switches to the other branch (P,P,) as soon as U goes out of that interval. In the 
subregions Mz and MD the system exhibits also negative differential susceptivity. 
Diagrams similar to that shown in figure 3 ( d )  have been obtained by Uppal er a1 
(1976) who studied a system of two rate equations describing a model of reaction 
kinetics in an open reactor. The rate equations used by these authors yield a block 
diagram similar to that in figure 1 ;  however, the input-output relationships of some 
blocks are more complex than in our case. 

In figure 4(a)  we show the map of the K plane drawn for case I. In cases I1 and 
I11 the maps are very similar to that of case I, the only differences being minor changes 
of shape of a few subregions. The map of the K plane for case IV is shown in figure 
4(b):  the major difference with the map of figure 4(a )  occurs in the third quadrant. 
When one or both of the E, vanish and the resulting discontinuity of (4) is properly 
taken into account the model of this paper reproduces the results of I. (Note that 
equation (3) of I contains a misprint: the sign in front of K ,  must be reversed.) 

The anomalies described above are exhibited by the system as a function of U 
when its parameters ( E , ,  and and the coupling constants) are kept fixed. Transitions 
from one kind of system response to another may also occur when the system parameters 
are varied. For example, keeping and E~ fixed and letting the coupling constants 
describe a trajectory in the K plane, a phase transition occurs when the trajectory 
crosses the boundary between two subregions of the K plane. 

is let to vanish in either or both subsystems, which hence exhibit a 
first-order transition, in the subregions Mz the system, instead of negative differential 
susceptivity, exhibits re-entrant behaviour in one of its responses, in agreement with 
the results of I. 

< 

When 
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This connection between negative differential susceptivity and re-entrant behaviour 
suggests that, by acting on some suitable parameter of a real physical system, it should 
be possible to observe a change of the system behaviour from a response exhibiting 
negative susceptivity to a re-entrant behaviour. This has been indeed observed in 
La-A12 alloys containing Ce impurities (30.5 at%). When the pressure is greater than 
about 6 Kbar this system exhibits a resistivity minimum versus temperature (Kondo 
effect). At lower pressures the system becomes a superconductor at a pressure depen- 
dent temperature T,, and re-enters its finite resistivity state at a temperature Tc2 < T,, 
(Ansari et a1 1981). We believe that a behaviour of this kind is to be expected also 
in re-entrant nematic liquid crystals. We were not able to find experimental results 
supporting this hypothesis. 

3. Discussion of the model 

In order to get a simple analytical solution of the model we made a number of 
simplifying assumptions that are briefly discussed here. 

(1) No time dispersion allowed. We assumed an infinitely fast response of all 
blocks in the diagram of figure 1, so our results are valid only in the limit w = 0. 
Preliminary results show that, for suitable values of the system parameters, the inclusion 
of time dispersion yields oscillating system responses when U is within some finite 
interval. This topic will be dealt with more extensively elsewhere. 

(2) No fluctuations. Our model exhibits all limitations of mean field theories. 
When fluctuations are taken into account a posteriori, as usual in mean field theories, 
by means of some equal area rule, in the regions Ms and Mz the bistability is replaced 
by a first-order phase transition. 

(3) Piecewise linearisation of the subsystem responses. No new or qualitatively 
different effect is expected if smooth Fi( Vi) functions are used instead of the linearised 
ones, except for a deformation of the maps of the K plane and a smoothing of the 
Vi ( U )  curves. Preliminary numerical results confirm this expectation. 

(4) Unbounded range of variability of U, VI and V2. For simplicity all the fields 
were allowed to span over all the real axis. When some field is to be identified with 
a positive defined physical quantity, additional constraints in the form of inequalities 
must be added to the system equations. The more immediate effect of these additional 
constraints is a deformation of the maps of the K plane. In certain cases which may 
bear a relevant physical interest, it may happen that no solution for VI and V2 is 
found in some finite interval of U This simply means that in that interval there is no 
response of the kind implied by assumption ( l ) ,  i.e. a response constant in time. In 
fact if the equations are modified so as to allow time dispersion, in these cases we 
obtain oscillating responses. 

The physical meaning of the block diagram of figure 1 is clearly evident. This block 
diagram, or eventually a more elaborate variant of it, can be adapted to several real 
physical systems whose macroscopic state is defined by two a priori uncorrelated 
physical quantities or order parameters. We say that two quantities measured in the 
same physical system are a priori uncorrelated when they are related to different 
processes and there are, or there may be in principle, physical systems exhibiting only 
either. Of course when the two processes occur within the same physical system a 
cross coupling between the two is usually expected. One of the more impressive 
situations of this kind is met when the two properties considered are superconductivity 
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(sc) and ferromagnetism (FM). Materials exhibiting either FM or sc have long been 
known; recently several workers have reported on the existence of materials exhibiting 
both FM and sc (see e.g. Sinha et a1 1982). Among the several kinds of unusual 
features exhibited by these materials are hysteresis and re-entrant phase transitions. 
The dedicated theories formulated for these systems invoke a competition between 
the sc and FM order parameters (see e.g. Jaric and Belic 1979). 

In other kinds of physical systems the recognition of the two a priori uncorrelated 
quantities may be less immediate than in the case of the ferromagnetic superconductors. 
Here are a few examples. 

Some lyotropic liquid crystals, composed by alternately stacked hydrophilic and 
hydrophobic layers, exhibit thermal hysteresis at a transition between mesophases 
(Giammarinaro and Micciancio 1981). In this case there are spatially segregated 
subsystems (the two kinds of layer) coupled by molecular interactions at the layer 
interfaces. Because of the different molecular composition the ‘order’ within each 
kind of layer is a priori uncorrelated with the ‘order’ within the other. 

The re-entrant behaviour of nematic liquid crystals may be challenging because of 
the spatial homogeneity of these systems. To explain the re-entrant behaviour of a 
class of liquid crystals Longa and De Jeu (1982) invoke a dynamic monomer-dimer 
equilibrium and define separate order parameters for the monomers and the dimers. 
The two subsystems (the monomeric and the dimeric ones) are coupled by a temperature 
dependent equilibrium kinetics ruling their relative abundances. 

In all the above examples the system driving force is always temperature and the 
systems can always be assumed closed and in their thermodynamic equilibrium state. 
Block diagrams featuring two interacting subsystems can also be drawn for non- 
equilibrium and open systems. For example the two rate equations used by Landsberg 
et a1 (1979) and Robbins et al (1981) to describe the complex behaviour observed in 
some materials exhibiting threshold switching and negative differential resistivity cor- 
respond to a block diagram very similar, although somewhat more complex, than that 
shown in figure 1. In this case the two subsystems are, respectively, the positive and 
negative current carriers. Also the block diagram drawn from the three equations of 
the oregonator (a mathematical model for chemical bistability and chemical oscillations 
in a continuously stirred tank reactor, see e.g. Tyson (1981)) can be read in terms of 
two interacting subsystems. In this case the coupling between the subsystems (two 
reaction equilibria) is far more complex than in the case considered in Q 2. An even 
more complex block diagram describes optical bistability. 

The model system worked in this paper can be considered an oversimplification of 
the physical systems referred to in the preceding paragraphs: no phase transition nor 
other potentially ‘dangerous’ trend was assumed in the interacting subsystems and the 
coupling was assumed strictly linear. In spite of these oversimplifications the model 
exhibits a rich variety of ‘strange’ responses to its driving field U as well as transitions 
between different kinds of responses when the system parameters are varied. Our 
results show that a number of ‘strange’ effects arise quite naturally when two well 
behaved systems are brought to interact. 

Theoretical results similar to ours to some extent have been reported by Imry 
(1975) for a Landau model with two interacting order parameters. The effects predicted 
in Imry’s paper are produced by a nonlinear coupling between the order parameters, 
while our results show that just a linear coupling is enough for the occurrence of a 
complex phase transition behaviour as well as other kinds of anomalies. Our approach 
is more general than Imry’s and evidences conceptual similarities among systems 
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described by different theoretical formalisms. A comparison between Imry’s results 
and ours may raise an intriguing question, how a linear coupling might be able to 
produce a richer variety of ‘strange’ effects than a nonlinear one. The following 
argument may help to solve the apparent paradox. Let to be a set of values of the 
control parameters of a nonlinear model. to belongs to some space E which will be 
divided in a number of regions, each defined by some feature exhibited by the solution 
of the model. If we fix to we may linearise the model in a neighbour of a solution. 
The linearisation algorithm will yield a new set of (effective) values for the control 
parameter, so that the linearised model will be individuated by some point 66 of the 
space E’. The linearisation is expected to give correct results in some neighbour of 
&E E to which corresponds a neighbour of 5; E E’. Now we believe that, in general, 
it is not granted that there is a one-to-one correspondence between the points of 5 
and E’. That is, we believe that, depending on the model and on the kind of nonlinearity, 
it may happen that the linearised model predicts, in a neighbour of 5; (far from 56) 
some feature that is not exhibited by the exact model. In other words ( 1  E E’ cannot 
be mapped in a point of E. Conversely all points of E are expected to possess an 
image in E’, unless some pathological situation prevents the application of a linearisation 
algorithm (e.g. in isolated critical points of E). 

Since our assumptions concerning the subsystems and their couplings are very loose 
and general one may expect that ‘strange’ effects can be observed, at least in principle, 
in almost all real physical systems. However, the experimentally accessible range of 
control of certain parameters of real physical systems is limited or even vanishingly 
small. For this reason some ‘strange’ effects are unusual and often can be observed 
only at the expense of a relevant experimental effort. 
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Appendix 

We eliminate Q, and Q2 between (3)  and (4) and obtain the equations of two surfaces 
in the space UV, V,: 

v2 = U, v, < w, -;a,, ( a ?  

( P I  v,= U + K , & + ( V -  W ) / E I ) ,  

(Y) v, = U+K,,, 

w, -;&, < v, < w, + ; E l ,  

w, + ; E 1  < v,, 
and 

v, = U, v2< W2-+E2, ( a ‘ )  

v, = U+K,,(:+( v,- W2)/E2), ( P ’ ?  
v, = U+K, , ,  W2f+E2 < v2. (Y‘) 

w 2 -1 ,E ,<  v2< W2+&2, 
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Each surface is a single connected sheet and is composed of three plane regions: two 
parallel half-planes (respectively a, y and a’,  y ’ )  linked by a strip of plane ( p  and 
p ’ ) .  The intersection of the two surfaces is a broken line composed of two straight 
half-lines and up to seven straight segments. Each of these nine possible parts (partial 
intersections) comes out from the intersection of one of the unprimed parts of the 
plane, equations ( a ) - ( y ) ,  with one of the primed ones, equations (a’)-(?’). The 
projection of this broken line onto the plane UV, yields a plane broken line, that is 
V,( U ) .  Substituting VI( U )  in (4) yields a,( U ) .  V,( U )  and a,( U )  are obtained in 
a similar way. 

In general when one studies the conditions for the existence of each of the nine 
possible partial intersections one finds two kinds of conditions (inequalities). The first 
kind involves only the sign of A, p and p ,  while the second kind involves the coupling 
constants and e l ,  E ~ ,  A. The conditions of the second kind generate lines (straight 
lines or hyperbolae) each dividing the K plane in two parts. Since the allowed 
combinations of signs of A, p, p are four, there are four distinct partitions of the K plane. 
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